Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 77
1.
Trials ; 25(1): 308, 2024 May 07.
Article En | MEDLINE | ID: mdl-38715118

BACKGROUND: Acute respiratory distress syndrome (ARDS) is a frequent cause of hypoxemic respiratory failure with a mortality rate of approximately 30%. Identifying ARDS subphenotypes based on "focal" or "non-focal" lung morphology has the potential to better target mechanical ventilation strategies of individual patients. However, classifying morphology through chest radiography or computed tomography is either inaccurate or impractical. Lung ultrasound (LUS) is a non-invasive bedside tool that can accurately distinguish "focal" from "non-focal" lung morphology. We hypothesize that LUS-guided personalized mechanical ventilation in ARDS patients leads to a reduction in 90-day mortality compared to conventional mechanical ventilation. METHODS: The Personalized Mechanical Ventilation Guided by UltraSound in Patients with Acute Respiratory Distress Syndrome (PEGASUS) study is an investigator-initiated, international, randomized clinical trial (RCT) that plans to enroll 538 invasively ventilated adult intensive care unit (ICU) patients with moderate to severe ARDS. Eligible patients will receive a LUS exam to classify lung morphology as "focal" or "non-focal". Thereafter, patients will be randomized within 12 h after ARDS diagnosis to receive standard care or personalized ventilation where the ventilation strategy is adjusted to the morphology subphenotype, i.e., higher positive end-expiratory pressure (PEEP) and recruitment maneuvers for "non-focal" ARDS and lower PEEP and prone positioning for "focal" ARDS. The primary endpoint is all-cause mortality at day 90. Secondary outcomes are mortality at day 28, ventilator-free days at day 28, ICU length of stay, ICU mortality, hospital length of stay, hospital mortality, and number of complications (ventilator-associated pneumonia, pneumothorax, and need for rescue therapy). After a pilot phase of 80 patients, the correct interpretation of LUS images and correct application of the intervention within the safe limits of mechanical ventilation will be evaluated. DISCUSSION: PEGASUS is the first RCT that compares LUS-guided personalized mechanical ventilation with conventional ventilation in invasively ventilated patients with moderate and severe ARDS. If this study demonstrates that personalized ventilation guided by LUS can improve the outcomes of ARDS patients, it has the potential to shift the existing one-size-fits-all ventilation strategy towards a more individualized approach. TRIAL REGISTRATION: The PEGASUS trial was registered before the inclusion of the first patient, https://clinicaltrials.gov/ (ID: NCT05492344).


Lung , Randomized Controlled Trials as Topic , Respiration, Artificial , Respiratory Distress Syndrome , Ultrasonography, Interventional , Humans , Respiratory Distress Syndrome/therapy , Respiratory Distress Syndrome/diagnostic imaging , Respiratory Distress Syndrome/mortality , Respiration, Artificial/methods , Lung/diagnostic imaging , Lung/physiopathology , Treatment Outcome , Ultrasonography, Interventional/methods , Time Factors , Multicenter Studies as Topic , Predictive Value of Tests , Precision Medicine/methods
3.
Neuropathol Appl Neurobiol ; 50(2): e12970, 2024 Apr.
Article En | MEDLINE | ID: mdl-38504418

PTEN hamartoma tumour syndrome (PHTS) comprises different hereditary conditions caused by germline PTEN mutations, predisposing to the development of multiple hamartomas in many body tissues and also increasing the risk of some types of cancer. Cerebellar involvement in PHTS patients has been long known due to the development of a pathognomonic cerebellar hamartoma (known as dysplastic gangliocytoma of the cerebellum or Lhermitte-Duclos disease). Recently, a crucial role of the cerebellum has been highlighted in the pathogenesis of autism spectrum disorders, now recognised as a phenotype expressed in a variable percentage of PHTS children. In addition, rare PTEN variants are indeed identified in medulloblastoma as well, even if they are less frequent than other germline gene mutations. The importance of PTEN and its downstream signalling enzymatic pathways, PI3K/AKT/mTOR, has been studied at different levels in both human clinical settings and animal models, not only leading to a better understanding of the pathogenesis of different disorders but, most importantly, to identify potential targets for specific therapies. In particular, PTEN integrity makes an important contribution to the normal development of tissue architecture in the nervous system, including the cerebellum. Thus, in patients with PTEN germline mutations, the cerebellum is an affected organ that is increasingly recognised in different disorders, whereas, in animal models, cerebellar Pten loss causes a variety of functional and histological alterations. In this review, we summarise the range of cerebellar involvement observed in PHTS and its relationships with germline PTEN mutations, along with the phenotypes expressed by murine models with PTEN deficiency in cerebellar tissue.


Cerebellar Neoplasms , Hamartoma Syndrome, Multiple , Child , Humans , Animals , Mice , Germ-Line Mutation , Phosphatidylinositol 3-Kinases , PTEN Phosphohydrolase/genetics , Cerebellum/pathology , Hamartoma Syndrome, Multiple/genetics , Hamartoma Syndrome, Multiple/pathology , Phenotype , Cerebellar Neoplasms/genetics , Cerebellar Neoplasms/pathology , Germ Cells/pathology , Mutation
4.
Crit Care Explor ; 6(2): e1036, 2024 Feb 01.
Article En | MEDLINE | ID: mdl-38356864

Objective: to describe clinical, management and outcome features of critically ill patients admitted to intensive care units (ICUs) and high dependency units (HDUs) in Kenya. Design: prospective registry-based observational study. Setting: three HDUs and eight ICUs in Kenya. Patients: consecutive adult patients admitted between January 2021 and June 2022. Interventions: none. Measurements and main results: data was entered in a cloud based platform using a common data model. Study endpoints included case mix variables, management features and patient centred outcomes. Patients with Coronavirus disease 2019 (COVID-19) were reported separately. Of the 3892/4546 patients without COVID-19, 2445 patients (62.8%) were from HDUs and 1447 (37.2%) from ICUs. Patients had a median age of 53 years (interquartile range [IQR] 38-68), with HDU patients being older but with a lower severity (APACHE II 6 [3-9] in HDUs vs 12 [7-17] in ICUs; p<0.001). One out of four patients were postoperative with 604 (63.4%) receiving emergency surgery. Readmission rate was 4.8%. Hypertension and diabetes were prevalent comorbidities, with a 4.0% HIV/AIDS rate. Invasive mechanical ventilation (IMV) was applied in 3.4% in HDUs vs. 47.6% in ICUs (P<0.001), with a duration of 7 days (IQR 3-21). There was a similar use of renal replacement therapy (4.0% vs. 4.7%; P<0.001). Vasopressor use was infrequent while half of patients received antibiotics. Average length of stay was 2 days (IQR 1-5). Crude HDU mortality rate was 6.5% in HDUs versus 30.5% in the ICUs (P<0.001). Of the 654 COVID-19 admissions, most were admitted in ICUs (72.3%) with a 33.2% mortality. Conclusions: We provide the first multicenter observational cohort study from an African ICU national registry. Distinct management features and outcomes characterise HDU from ICU patients. Study registration: Clinicaltrials.gov (reference number NCT05456217, date of registration 07 Nov 2022).

5.
J Crit Care ; 81: 154531, 2024 Jun.
Article En | MEDLINE | ID: mdl-38341938

PURPOSE: We investigated driving pressure (ΔP) and mechanical power (MP) and associations with clinical outcomes in critically ill patients ventilated for reasons other than ARDS. MATERIALS AND METHODS: Individual patient data analysis of a pooled database that included patients from four observational studies of ventilation. ΔP and MP were compared among invasively ventilated non-ARDS patients with sepsis, with pneumonia, and not having sepsis or pneumonia. The primary endpoint was ΔP; secondary endpoints included MP, ICU mortality and length of stay, and duration of ventilation. RESULTS: This analysis included 372 (11%) sepsis patients, 944 (28%) pneumonia patients, and 2040 (61%) patients ventilated for any other reason. On day 1, median ΔP was higher in sepsis (14 [11-18] cmH2O) and pneumonia patients (14 [11-18]cmH2O), as compared to patients not having sepsis or pneumonia (13 [10-16] cmH2O) (P < 0.001). Median MP was also higher in sepsis and pneumonia patients. ΔP, as opposed to MP, was associated with ICU mortality in sepsis and pneumonia patients. CONCLUSIONS: The intensity of ventilation differed between patients with sepsis or pneumonia and patients receiving ventilation for any other reason; ΔP was associated with higher mortality in sepsis and pneumonia patients. REGISTRATION: This post hoc analysis was not registered; the individual studies that were merged into the used database were registered at clinicaltrials.gov: NCT01268410 (ERICC), NCT02010073 (LUNG SAFE), NCT01868321 (PRoVENT), and NCT03188770 (PRoVENT-iMiC).


Pneumonia , Respiratory Distress Syndrome , Sepsis , Humans , Respiration, Artificial/adverse effects , Intensive Care Units , Lung , Respiratory Distress Syndrome/therapy , Respiratory Distress Syndrome/etiology , Sepsis/therapy , Sepsis/etiology
6.
Chest ; 165(2): 233-235, 2024 Feb.
Article En | MEDLINE | ID: mdl-38336431
7.
Ultrasound J ; 16(1): 7, 2024 Feb 12.
Article En | MEDLINE | ID: mdl-38345653

In critically ill patients with acute respiratory failure, thoracic images are essential for evaluating the nature, extent and progression of the disease, and for clinical management decisions. For this purpose, computed tomography (CT) is the gold standard. However, transporting patients to the radiology suite and exposure to ionized radiation limit its use. Furthermore, a CT scan is a static diagnostic exam for the thorax, not allowing, for example, appreciation of "lung sliding". Its use is also unsuitable when it is necessary to adapt or decide to modify mechanical ventilation parameters at the bedside in real-time. Therefore, chest X-ray and lung ultrasound are today's contenders for shared second place on the podium to acquire a thoracic image, with their specific strengths and limitations. Finally, electrical impedance tomography (EIT) could soon have a role, however, its assessment is outside the scope of this review. Thus, we aim to carry out the following points: (1) analyze the advancement in knowledge of lung ultrasound use and the related main protocols adopted in intensive care units (ICUs) over the latest 30 years, reporting the principal publications along the way, (2) discuss how and when lung ultrasound should be used in a modern ICU and (3) illustrate the possible future development of LUS.

8.
Crit Care Med ; 52(1): 125-135, 2024 01 01.
Article En | MEDLINE | ID: mdl-37698452

OBJECTIVES: Clinical quality registries (CQRs) have been implemented worldwide by several medical specialties aiming to generate a better characterization of epidemiology, treatments, and outcomes of patients. National ICU registries were created almost 3 decades ago to improve the understanding of case-mix, resource use, and outcomes of critically ill patients. This narrative review describes the challenges, proposed solutions, and evidence generated by National ICU registries as facilitators for research and quality improvement. DATA SOURCES: English language articles were identified in PubMed using phrases related to ICU registries, CQRs, outcomes, and case-mix. STUDY SELECTION: Original research, review articles, letters, and commentaries, were considered. DATA EXTRACTION: Data from relevant literature were identified, reviewed, and integrated into a concise narrative review. DATA SYNTHESIS: CQRs have been implemented worldwide by several medical specialties aiming to generate a better characterization of epidemiology, treatments, and outcomes of patients. National ICU registries were created almost 3 decades ago to improve the understanding of case-mix, resource use, and outcomes of critically ill patients. The initial experience in European countries and in Oceania ensured that through locally generated data, ICUs could assess their performances by using risk-adjusted measures and compare their results through fair and validated benchmarking metrics with other ICUs contributing to the CQR. The accomplishment of these initiatives, coupled with the increasing adoption of information technology, resulted in a broad geographic expansion of CQRs as well as their use in quality improvement studies, clinical trials as well as international comparisons, and benchmarking for ICUs. CONCLUSIONS: ICU registries have provided increased knowledge of case-mix and outcomes of ICU patients based on real-world data and contributed to improve care delivery through quality improvement initiatives and trials. Recent increases in adoption of new technologies (i.e., cloud-based structures, artificial intelligence, machine learning) will ensure a broader and better use of data for epidemiology, healthcare policies, quality improvement, and clinical trials.


Critical Illness , Quality Improvement , Humans , Critical Illness/epidemiology , Critical Illness/therapy , Artificial Intelligence , Intensive Care Units , Registries
10.
Wellcome Open Res ; 8: 29, 2023.
Article En | MEDLINE | ID: mdl-37954925

Background: Improved access to healthcare in low- and middle-income countries (LMICs) has not equated to improved health outcomes. Absence or unsustained quality of care is partly to blame. Improving outcomes in intensive care units (ICUs) requires delivery of complex interventions by multiple specialties working in concert, and the simultaneous prevention of avoidable harms associated with the illness and the treatment interventions. Therefore, successful design and implementation of improvement interventions requires understanding of the behavioural, organisational, and external factors that determine care delivery and the likelihood of achieving sustained improvement. We aim to identify care processes that contribute to suboptimal clinical outcomes in ICUs located in LMICs and to establish barriers and enablers for improving the care processes. Methods: Using rapid evaluation methods, we will use four data collection methods: 1) registry embedded indicators to assess quality of care processes and their associated outcomes; 2) process mapping to provide a preliminary framework to understand gaps between current and desired care practices; 3) structured observations of processes of interest identified from the process mapping and; 4) focus group discussions with stakeholders to identify barriers and enablers influencing the gap between current and desired care practices. We will also collect self-assessments of readiness for quality improvement. Data collection and analysis will be led by local stakeholders, performed in parallel and through an iterative process across eight countries: Kenya, India, Malaysia, Nepal, Pakistan, South Africa, Uganda and Vietnam. Conclusions: The results of our study will provide essential information on where and how care processes can be improved to facilitate better quality of care to critically ill patients in LMICs; thus, reduce preventable mortality and morbidity in ICUs. Furthermore, understanding the rapid evaluation methods that will be used for this study will allow other researchers and healthcare professionals to carry out similar research in ICUs and other health services.

11.
Antimicrob Resist Infect Control ; 12(1): 119, 2023 10 31.
Article En | MEDLINE | ID: mdl-37904230

BACKGROUND: Sepsis is the third leading cause of neonatal death in low and middle-income countries, accounting for one third of all deaths in Ethiopia. A concerning issue is the increasing number of multidrug-resistant microorganisms facilitated by suboptimal antibiotic stewardship. The study aims to identify clusters of newborns switching antibiotic lines for sepsis in a neonatal intensive care unit (NICU) in Ethiopia, and to explore their potential association with sepsis outcomes. METHODS: A retrospective cohort study was conducted including all newborns discharged with a diagnosis of probable neonatal sepsis from the St. Luke Catholic Hospital NICU between April and July 2021. The antibiotic management protocol included two lines according to WHO guidelines and a third line based on internal hospital guidelines. In the cluster analysis, the Gower distance was estimated based on the antibiotics employed in the different lines and the duration of each line. Mortality and respiratory distress (RD) were the response variables. RESULTS: In the study period, 456 newborns were admitted to the NICU and 196 (42.8%) had probable neonatal sepsis. Four antibiotic management clusters were identified. Cluster 1 (n = 145, 74.4%) had no antibiotic switches, using only the first line. Cluster 2 (n = 26, 13.3%) had one switch from the first to the second line. Cluster 4 (n = 9, 4.6%) had two switches: from first to second and then to third line. In cluster 3 (n = 15, 7.7%), newborns were switched from ceftriaxone/cloxacillin as second line to off-protocol antibiotics. There were no differences in sex, age, weight on admission or crude mortality between clusters. Cluster 3 included a higher frequency of infants who did not breathe at birth (53.3%, p = 0.011) and that necessitated bag ventilation (46.7%, p = 0.039) compared to the other clusters. CONCLUSIONS: The first antibiotic line failed in one out of four newborns with probable sepsis while third-generation cephalosporins were insufficient in one in ten patients. Cluster analysis can provide valuable insights into antibiotic treatment patterns and their potential implications. This approach may support antibiotic stewardship and aid in contrasting antimicrobial resistance in limited resource settings.


Antimicrobial Stewardship , Neonatal Sepsis , Sepsis , Infant , Humans , Infant, Newborn , Neonatal Sepsis/drug therapy , Retrospective Studies , Critical Illness , Anti-Bacterial Agents/therapeutic use , Sepsis/drug therapy , Cluster Analysis
12.
Antioxidants (Basel) ; 12(8)2023 Aug 04.
Article En | MEDLINE | ID: mdl-37627552

The neurofibromatosis-1 gene (NF1) was initially characterized because its germline mutation is responsible for an inherited syndromic disease predisposing tumor development, in particular neurofibromas but also various malignancies. Recently, large-scale tumor sequencing efforts have demonstrated NF1 as one of the most frequently mutated genes in human cancer, being mutated in approximately 5-10% of all tumors, especially in malignant peripheral nerve sheath tumors and different skin tumors. NF1 acts as a tumor suppressor gene that encodes neurofibromin, a large protein that controls neoplastic transformation through several molecular mechanisms. On the other hand, neurofibromin loss due to NF1 biallelic inactivation induces tumorigenic hyperactivation of Ras and mTOR signaling pathways. Moreover, neurofibromin controls actin cytoskeleton structure and the metaphase-anaphase transition. Consequently, neurofibromin deficiency favors cell mobility and proliferation as well as chromosomal instability and aneuploidy, respectively. Growing evidence supports the role of oxidative stress in NF1-related tumorigenesis. Neurofibromin loss induces oxidative stress both directly and through Ras and mTOR signaling activation. Notably, innovative therapeutic approaches explore drug combinations that further increase reactive oxygen species to boost the oxidative unbalance of NF1-altered cancer cells. In our paper, we review NF1-related tumors and their pathogenesis, highlighting the twofold contribution of oxidative stress, both tumorigenic and therapeutic.

13.
Front Public Health ; 11: 1189684, 2023.
Article En | MEDLINE | ID: mdl-37575120

Introduction: Poor adherence to guidelines during empirical antibiotic prescription in low-income countries could increase antimicrobial resistance without improving outcomes. Revised World Health Organization (WHO) guidelines published in 2014 on childhood (2-59 months) pneumonia re-defined the classification of severe pneumonia and changed the first-line treatment. The adherence to WHO guidelines in southern Ethiopia at the hospital level is unknown. We sought to determine the adherence to WHO guidelines on severe pneumonia first-line treatment in children in an Ethiopian referral hospital and assess the impact of non-adherence on patient outcomes. Methods: An observational study was conducted on all children (2-59 months) clinically diagnosed with severe pneumonia and admitted to the Pediatric Ward of Jinka Hospital from 1 June 2021 to 31 May 2022. Exclusion criteria included a known HIV infection, ongoing antibiotic treatment before the event not related to acute pneumonia, or any other severe bacterial infection, confirmed or suspected. Adherence to guidelines was defined as first-line treatment with ampicillin or benzylpenicillin and gentamicin at the recommended dose. We compared the patients treated adherently vs. non-adherently. For categorical variables, the chi-square or Fisher's exact test was used, while for continuous variables, the Mann-Whitney U-test was used. Multivariate logistic regression was used to evaluate the association between adherence and demographic and clinical characteristics. Results: During the observational period, 266 patients were registered as having severe pneumonia with an age between 2 and 59 months. After excluding 114 patients due to missing charts or other exclusion criteria, a total of 152 patients were included in the analysis. Of these, 78 (51%) were girls with a median age of 10 months (IQR 7-14). Overall, 75 (49%) patients received therapy according to the WHO guidelines. Compared to patients treated adherently to the guidelines, patients not treated adherently had similar outcomes [median length of stay of 3 (IQR 3-5) and 4 (IQR 3-6) days], median duration of oxygen therapy of 2 (IQR 1-3) for both the groups, and self-discharge rates of 5% and 6.5%, respectively). Conclusion: Adherence to the revised WHO guideline was limited and not associated with outcomes. Efforts should focus on reducing the gap between theory and practice.


HIV Infections , Pneumonia , Female , Humans , Child , Infant , Child, Preschool , Male , Hospitals, General , Ethiopia , HIV Infections/drug therapy , Pneumonia/drug therapy , Anti-Bacterial Agents/therapeutic use , World Health Organization
14.
BMC Pregnancy Childbirth ; 23(1): 580, 2023 Aug 12.
Article En | MEDLINE | ID: mdl-37573345

INTRODUCTION: Sickle cell disease (SCD) in pregnancy is associated with worse maternal and neonatal outcomes. There is limited available data describing the burden and outcomes of critically ill obstetric patients affected by SCD in low-income settings. OBJECTIVES: We aimed to define SCD burden and impact on mortality in critically-ill obstetric patients admitted to an urban referral hospital in Sierra Leone. We hypothesized that SCD burden is high and independently associated with increased mortality. METHODS: We performed a registry-based cross-sectional study from March 2020 to December 2021 in the high-dependency unit (HDU) of Princess Christian Maternity Hospital PCMH, Freetown. Primary endpoints were the proportion of patients identified in the SCD group and HDU mortality. Secondary endpoints included frequency of maternal direct obstetric complications (MDOCs) and the maternal early obstetric warning score (MEOWS). RESULTS: Out of a total of 497 patients, 25 (5.5%) qualified to be included in the SCD group. MEOWS on admission was not different between patients with and without SCD and SCD patients had also less frequently reported MDOCs. Yet, crude HDU mortality in the SCD group was 36%, compared to 9.5% in the non SCD group (P < 0.01), with an independent association between SCD group exposure and mortality when accounting for severity on admission (hazard ratio 3.40; 95%CI 1.57-7.39; P = 0.002). Patients with SCD had a tendency to longer HDU length of stay. CONCLUSIONS: One out of twenty patients accessing a HDU in Sierra Leone fulfilled criteria for SCD. Despite comparable severity on admission, mortality in SCD patients was four times higher than patients without SCD. Optimization of intermediate and intensive care for this group of patients should be prioritized in low-resource settings with high maternal mortality.


Anemia, Sickle Cell , Critical Illness , Infant, Newborn , Humans , Pregnancy , Female , Sierra Leone/epidemiology , Cross-Sectional Studies , Hospitalization , Anemia, Sickle Cell/epidemiology , Anemia, Sickle Cell/therapy
15.
Intensive Crit Care Nurs ; 79: 103494, 2023 Dec.
Article En | MEDLINE | ID: mdl-37556987

OBJECTIVES: To investigate how anxiety, depression, stress, burnout, and sleep quality impact on Quality of life of critical care nurses. BACKGROUND: Several studies reported that critical care nurses are exposed to a high risk of anxiety, depression, burnout, stress, and sleep quality, but we do not know the impact of critical care nurses. DESIGN: A cross-sectional study. METHODS: We have included all critical care nurses working in the intensive care unit for at least six months. Data were collected from December 1, 2021, to March 18, 2022. We evaluated the critical care nurses using the Depression Anxiety Stress Scale (DASS), Maslach Burnout Inventory scale, Pittsburgh Sleep Quality Index and Nurse Quality of Life. The primary endpoint is Quality of Life. Associations were tested using multivariate modelling. RESULTS: A total of 140 critical care nurses were included. Multivariate regression showed the relation between emotional QoL and emotional exhaustion and DASS total score [OR = 0.14; 95% CI (0.03-0.73); p = 0.019 and OR = 3.64; 95% CI (1.07-12.32); p = 0.038, respectively]. Personal accomplishment and DASS total score have a direct relationship on quality of work-life [OR = 0.21; 95% CI (0.05-0.82); p = 0.024 and OR = 4.18; 95% CI (1.01-17.33); p = 0.049, respectively]. CONCLUSIONS: The physical quality of life is not optimal in critical care nurses, while burnout and the DASS score directly impact the emotional and work-life quality of life. IMPLICATIONS FOR CLINICAL PRACTICE: Our research has highlighted the importance of detecting the quality of life of critical care nurses. The nurses should take proper care of their health by adopting the right health behaviours to create correct work conditions and increase the quality of care for critically ill patients.


Burnout, Professional , Nurses , Nursing Staff, Hospital , Humans , Cross-Sectional Studies , Quality of Life , Depression/complications , Depression/psychology , Sleep Quality , Nursing Staff, Hospital/psychology , Surveys and Questionnaires , Burnout, Professional/complications , Burnout, Professional/psychology , Critical Care , Anxiety/complications
16.
J Anesth Analg Crit Care ; 3(1): 29, 2023 Aug 28.
Article En | MEDLINE | ID: mdl-37641139

BACKGROUND: According to the Surviving Sepsis Campaign (SSC) fluids and vasopressors are the mainstays of early resuscitation of septic shock while inotropes are indicated in case of tissue hypoperfusion refractory to fluids and vasopressors, suggesting severe cardiac dysfunction. However, septic cardiac disfunction encompasses a large spectrum of severities and may remain "subclinical" during early resuscitation. We hypothesized that "subclinical" cardiac dysfunction may nevertheless influence fluid and vasopressor administration during early resuscitation. We retrospectively reviewed prospectically collected data on fluids and vasoconstrictors administered outside the ICU in patients with septic shock resuscitated according to the SSC guidelines that had reached hemodynamic stability without the use of inotropes. All the patients were submitted to transpulmonary thermodilution (TPTD) hemodynamic monitoring at ICU entry. Subclinical cardiac dysfunction was defined as a TPTD-derived cardiac function index (CFI) ≤ 4.5 min-1. RESULTS: At ICU admission, subclinical cardiac dysfunction was present in 17/40 patients (42%; CFI 3.6 ± 0.7 min-1 vs 6.6 ± 1.9 min-1; p < 0.01). Compared with patients with normal CFI, these patients had been resuscitate with more fluids (crystalloids 57 ± 10 vs 47 ± 9 ml/kg PBW; p < 0.01) and vasopressors (norepinephrine 0.65 ± 0.25 vs 0.43 ± 0.29 mcg/kg/min; p < 0.05). At ICU admission these patients had lower cardiac index (2.2 ± 0.6 vs 3.6 ± 0.9 L/min/m2, p < 0.01) and higher systemic vascular resistances (2721 ± 860 vs 1532 ± 480 dyn*s*cm-5/m2, p < 0.01). CONCLUSIONS: In patients with septic shock resuscitated according to the SSC, we found that subclinical cardiac dysfunction may influence the approach to fluids and vasopressor administration during early resuscitation. Our data support the implementation of early, bedside assessment of cardiac function during early resuscitation of septic shock.

17.
Crit Care ; 27(1): 257, 2023 07 01.
Article En | MEDLINE | ID: mdl-37393330

BACKGROUND: Interpreting point-of-care lung ultrasound (LUS) images from intensive care unit (ICU) patients can be challenging, especially in low- and middle- income countries (LMICs) where there is limited training available. Despite recent advances in the use of Artificial Intelligence (AI) to automate many ultrasound imaging analysis tasks, no AI-enabled LUS solutions have been proven to be clinically useful in ICUs, and specifically in LMICs. Therefore, we developed an AI solution that assists LUS practitioners and assessed its usefulness in  a low resource ICU. METHODS: This was a three-phase prospective study. In the first phase, the performance of four different clinical user groups in interpreting LUS clips was assessed. In the second phase, the performance of 57 non-expert clinicians with and without the aid of a bespoke AI tool for LUS interpretation was assessed in retrospective offline clips. In the third phase, we conducted a prospective study in the ICU where 14 clinicians were asked to carry out LUS examinations in 7 patients with and without our AI tool and we interviewed the clinicians regarding the usability of the AI tool. RESULTS: The average accuracy of beginners' LUS interpretation was 68.7% [95% CI 66.8-70.7%] compared to 72.2% [95% CI 70.0-75.6%] in intermediate, and 73.4% [95% CI 62.2-87.8%] in advanced users. Experts had an average accuracy of 95.0% [95% CI 88.2-100.0%], which was significantly better than beginners, intermediate and advanced users (p < 0.001). When supported by our AI tool for interpreting retrospectively acquired clips, the non-expert clinicians improved their performance from an average of 68.9% [95% CI 65.6-73.9%] to 82.9% [95% CI 79.1-86.7%], (p < 0.001). In prospective real-time testing, non-expert clinicians improved their baseline performance from 68.1% [95% CI 57.9-78.2%] to 93.4% [95% CI 89.0-97.8%], (p < 0.001) when using our AI tool. The time-to-interpret clips improved from a median of 12.1 s (IQR 8.5-20.6) to 5.0 s (IQR 3.5-8.8), (p < 0.001) and clinicians' median confidence level improved from 3 out of 4 to 4 out of 4 when using our AI tool. CONCLUSIONS: AI-assisted LUS can help non-expert clinicians in an LMIC ICU improve their performance in interpreting LUS features more accurately, more quickly and more confidently.


Artificial Intelligence , Intensive Care Units , Humans , Prospective Studies , Retrospective Studies , Ultrasonography
18.
PLoS One ; 18(7): e0284245, 2023.
Article En | MEDLINE | ID: mdl-37498872

OBJECTIVE: To describe the organisation, staffing patterns and resources available in critical care units in Kenya. The secondary objective was to explore variations between units in the public and private sectors. MATERIALS AND METHODS: An online cross-sectional survey was used to collect data on organisational characteristics (model of care, type of unit, quality- related activities, use of electronic medical records and participation in the national ICU registry), staffing and available resources for monitoring, ventilation and general critical care. RESULTS: The survey included 60 of 75 identified units (80% response rate), with 43% (n = 23) located in government facilities. A total of 598 critical care beds were reported with a median of 6 beds (interquartile range [IQR] 5-11) per unit, with 26% beds (n = 157) being non functional. The proportion of ICU beds to total hospital beds was 3.8% (IQR 1.9-10.4). Most of the units (80%, n = 48) were mixed/general units with an open model of care (60%, n = 36). Consultants-in-charge were mainly anesthesiologists (69%, n = 37). The nurse-to-bed ratio was predominantly 1:2 with half of the nurses formally trained in critical care. Most units (83%, n = 47) had a dedicated ventilator for each bed, however 63% (n = 39) lacked high flow nasal therapy. While basic multiparametric monitoring was ubiquitous, invasive blood pressure measurement capacity was low (3% of beds, IQR 0-81%), and capnography moderate (31% of beds, IQR 0-77%). Blood gas analysers were widely available (93%, n = 56), with 80% reported as functional. Differences between the public and private sector were narrow. CONCLUSION: This study shows an established critical care network in Kenya, in terms of staffing density, availability of basic monitoring and ventilation resources. The public and private sector are equally represented albeit with modest differences. Potential areas for improvement include training, use of invasive blood pressure and functionality of blood gas analysers.


Critical Care , Intensive Care Units , Humans , Cross-Sectional Studies , Kenya , Workforce
20.
Diagnostics (Basel) ; 13(12)2023 Jun 07.
Article En | MEDLINE | ID: mdl-37370885

BACKGROUND: Ventilation with lower positive end-expiratory pressure (PEEP) may cause loss of lung aeration in critically ill invasively ventilated patients. This study investigated whether a systematic lung ultrasound (LUS) scoring system can detect such changes in lung aeration in a study comparing lower versus higher PEEP in invasively ventilated patients without acute respiratory distress syndrome (ARDS). METHODS: Single center substudy of a national, multicenter, randomized clinical trial comparing lower versus higher PEEP ventilation strategy. Fifty-seven patients underwent a systematic 12-region LUS examination within 12 h and between 24 to 48 h after start of invasive ventilation, according to randomization. The primary endpoint was a change in the global LUS aeration score, where a higher value indicates a greater impairment in lung aeration. RESULTS: Thirty-three and twenty-four patients received ventilation with lower PEEP (median PEEP 1 (0-5) cm H2O) or higher PEEP (median PEEP 8 (8-8) cm H2O), respectively. Median global LUS aeration scores within 12 h and between 24 and 48 h were 8 (4 to 14) and 9 (4 to 12) (difference 1 (-2 to 3)) in the lower PEEP group, and 7 (2-11) and 6 (1-12) (difference 0 (-2 to 3)) in the higher PEEP group. Neither differences in changes over time nor differences in absolute scores reached statistical significance. CONCLUSIONS: In this substudy of a randomized clinical trial comparing lower PEEP versus higher PEEP in patients without ARDS, LUS was unable to detect changes in lung aeration.

...